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Executive Summary

Extreme precipitation statistics are used for modelling the flooding that might occur at a
location, and are also known as design rainfall, precipitation frequency, intensity-duration-
frequency or depth-duration-frequency. Traditionally these are derived from long-term rain gauge
records. However there are many parts of the world that are physically distant from available
rain gauges, making it challenging to estimate extreme statistics. XRain instead derives these
statistics from a 20-year satellite dataset of precipitation, covering the majority of the globe
and providing data even in areas without rain gauges.

The generalised extreme value (GEV) distribution is fitted to a total of 4.32 million cells at 25
durations. The Ailliot et al. 2011 CM1 method is used, combining the strength of L-moment
and maximum-likelihood estimators for best performance at small sample sizes. L-moments
and the shape parameter κ are regionalised to improve parameter estimation, and sample plots
are presented at the global scale.

XRain estimates are compared with those from USA, UK, Australia and New Zealand to
demonstrate spatial variability and the variability between different durations and frequen-
cies. Patterns are replicated reasonably well, with the ratio between XRain depths and depth
from the local dataset not varying dramatically. However it is recommended that predictions
are calibrated against available local data wherever possible.
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1 Overview

Extreme precipitation statistics are estimates of the depth or intensity of precipitation that
will occur at a certain frequency, and are used for modelling the flooding that might occur at
a location; estimating volume, depth, velocity and other parameters. This information can in
turn be used to evaluate flood risk, to set floor levels for new buildings, to design stormwater
infrastructure such as pipes, culverts or detention basins, and to test whether proposed flood
protection/mitigation works like dykes (levees) or groynes will be effective. It can also be used
to test the design of roads or bridges or to evaluate the performance of dams in flood events.

Extreme precipitation is sometimes known as design rainfall, precipitation frequency, intensity-
duration-frequency, depth-duration-frequency or high intensity precipitation. The terms intensity-
duration-frequency (IDF) and depth-duration-frequency (DDF) also describe the tabular
format that this data is generally presented in, depending on whether average intensity or
total depth is listed.

The frequency that a certain level of precipitation will occur at is expressed in terms of:

• the annual exceedance probability (AEP), which is the probability that an event of that
size or greater will occur in a given year, or

• the average recurrence interval (ARI), which is the average time period between events
of that size or greater, and is also known as the return period.

As larger drainage basins1 are affected by rainfall over a longer period of time than smaller
drainage basins, duration is an important part of such an analysis.

Generally, extreme precipitation statistics are derived from long-term rain gauge records.
Rain gauges directlymeasure the precipitation at a certain point location; if they are installed
appropriately and cover a sufficiently long period of time they can provide excellent data.
However, estimating precipitation between rain gauges can be a difficult process; relying on
assumptions about orographic effects, etc. There are many parts of the world that are physi-
cally distant from available rain gauges, presenting a formidable challenge for flood protection
and management projects.

The goal of this work was to derive extreme precipitation statistics from a satellite-measured
dataset of historical precipitationmade by theGlobal PrecipitationMeasurement (GPM)mis-
sion, a joint project between NASA and JAXA.The dataset, known as GPM_3IMERGHH_06
(Huffman et al. 2019)2 covers the majority of the globe, providing data even in areas without
rain gauges.

This work analysed precipitation from 2001 to 2020, providing a baseline of historical con-
ditions. To allow for climate change, users should apply local guidance or IPCC AR6 (Inter-
governmental Panel on Climate Change Sixth Assessment Report) projections at interactive-
atlas.ipcc.ch.

The resulting DDF/IDF data is available for purchase from xrain.info/data.

1Also known as watersheds or catchments
2GPM IMERG (Integrated Multi-satellitE Retrievals for GPM) Final Precipitation L3 Half Hourly 0.1 degree x
0.1 degree V06B
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2 Source Dataset

The GPM_3IMERGHH_06 (Huffman et al. 2019) dataset supplies a calibrated precipitation
field (“precipitationCal”) in units of mm/hr. This data is derived frommeasurements made by
passive microwave (PMW) sensors on a constellation of satellites orbiting the earth, and is cal-
ibrated against monthly precipitation totals taken from over 79,000 rain gauge stations across
the world. Calibration rain gauge data is supplied by the Global Precipitation Climatology
Centre (GPCC).

The dataset:

• Has a temporal resolution (i.e. time step) of 30 minutes3

• Begins 1 June 2000, but for this analysis full years of data are used, from 2001 to 2020.

• Has near-complete temporal coverage between 60° N and 60° S

• Uses the WGS84 coordinate system (EPSG 4326) with a spatial resolution of 0.1° by 0.1°;
roughly 11 km by 11 km at the equator and 6 km by 11 km at ± 60° latitude.

This resolution equates to 3600 cells (pixels) wide by 1200 cells high between 60° N and 60°
S; a total of 4.32 million cells. Figure 1 plots mean annual depth between 60° N and 60° S.
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Figure 1: Mean annual depth

3 Approach

The objective of this work was to estimate precipitation at various probabilities of occurrence,
particularly at low AEP or high ARI values (such as the 1% AEP).

The greatest runoff produced from small drainage basins is driven by short but intense pre-
cipitation, while the greatest runoff from large drainage basins is driven by longer sustained
precipitation. Hydrologically this is represented by the lag time or time of concentration

3While the data is presented with a uniform time step, it is based on periodic near-instantaneous measurements
as satellites orbit the earth.
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parameters (Woodward 2010). Therefore in order to be widely applicable, this analysis of
extreme precipitation was conducted at a wide range of durations; specifically:

1 hr, 1.5 hrs, 2 hrs, 2.5 hrs, 3 hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs, 10 hrs, 12 hrs, 16 hrs, 20
hrs, 24 hrs, 30 hrs, 36 hrs, 48 hrs (2 days), 72 hrs (3 days), 96 hrs (4 days), 168 hrs (1
week), 336 hrs (2 weeks), 672 hrs (4 weeks), 1008 hrs (6 weeks), 2016 hrs (12 weeks),
and 3024 hrs (18 weeks).

Of note, the 0.5 hour duration was excluded, because a 0.5 hour time step does not adequately
resolve a 0.5 hour event (if the event starts and finishes between time steps it may result in
significantly lower depths than it had in reality). This is analogous to the Nyquist frequency
in signal processing.

Historically the peak over threshold (POT)method has been used to derive average recurrence
intervals (ARIs) while the annual maxima method has been used to derive annual exceedance
probabilities (AEPs). The peak over threshold method, also known as the partial duration
series, considers events above a certain threshold. The major difficulties with this method are
ensuring the independence of events and choosing an appropriate threshold value (Bezak et al.
2014). By contrast the annual maxima method simply identifies the largest event in each year,
with no need for a threshold.

This analysis was carried out using the annual maxima method, and in terms of annual ex-
ceedance probability. Conversion to average recurrence interval is done as required, using the
inverse of Langbein’s formula (Langbein 1949); i.e. ARI = −1/ ln(1 − AEP). This formula is
approximately equal to the commonly-used equation ARI = 1/AEP above an ARI of 10 years
(Figure 2).
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Figure 2: Difference between Langbein 1949 formula and 1/AEP

At every location (pixel), the moving total depth was calculated for each of the durations listed
above. The largest event in each year was then identified.
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Fisher and Tippett 1928 showed that there are three possible limiting distributions for ex-
tremes, which are now known as the Gumbel (type 1), Fréchet (type 2) and reversed Weibull
(type 3). The generalised extreme value (GEV) distribution (von Mises 1936; frequently at-
tributed to Jenkinson 1955) unifies these three distributions into a single expression, and has
been used to analyse precipitation across the globe (Papalexiou and Koutsoyiannis 2013). For
this work, we fitted the GEV distribution to annual maxima depths at each location and du-
ration, giving the ability to estimate precipitation at any arbitrary AEP or ARI.

This statistical analysis implicitly makes the assumption that climatic conditions have not
changed over the period in question—a “stationary” climate. This is not true, for at least two
reasons:

1. Climate change: there is strong consensus that global surface temperatures are increasing,
leading to more frequent weather extremes, including precipitation extremes (droughts
and heavy rainfall).

2. Long-term (multi-decade) climate oscillations such as the Atlantic Multidecadal Oscil-
lation and the Indian Ocean Dipole can lead to increases in precipitation in some places
and decreases in others. These effects will invariably be seen in extreme precipitation
events, and therefore will influence the extreme precipitation statistics calculated from
the GPM_3IMERGHH_06 dataset.

Users will need to account for these as necessary in their use of the data. With respect to
climate change, users should use local guidance or IPCC AR6 (Intergovernmental Panel on
Climate Change Sixth Assessment Report) projections at interactive-atlas.ipcc.ch.

4 Fitting Procedure

The generalised extreme value (GEV) distribution, introduced above, is a robust and flexible
distribution for modelling extreme values.

The GEV distribution has three parameters, σ > 0 (scale), µ (location) and κ (shape). The
cumulative distribution function is given by

F (z) =

e−(1− κz)1/κ κ ̸= 0

e−e−z
κ = 0

(1)

where

z =
x− µ

σ
(2)

Translating this to more familiar terms, the annual exceedance probability AEP of an event
of size x is

AEP = 1− F (z) = 1−

e−(1− κz)1/κ κ ̸= 0

e−e−z
κ = 0

(3)
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The inverse is

x =

µ+ σ
1− (−ln(1−AEP))κ

κ κ ̸= 0

µ− σln(−ln(1−AEP)) κ = 0
(4)

When κ = 0, the GEV distribution reduces to the two parameter Gumbel (type 1). κ < 0

corresponds to a heavy-tail Fréchet distribution (type 2) with a lower bound of σ/κ+ µ, and
κ > 0 to a light-tail Weibull distribution (type 3) with an upper bound of σ/κ+ µ.

At low AEP values (such as the 1% AEP), the GEV distribution is particularly sensitive to the
κ (shape) parameter.

Threemethods are commonly used for fitting theGEVdistribution to annualmaxima samples:

• Method of moments (MOM; Chebyshev 1887)

• Maximum-likelihood estimators (MLE; Prescott and Walden 1980), where the parame-
tersµ, σ and κ are those thatmaximise the likelihood function (or the log of the likelihood
function), and

• L-moment (LM) estimators (Hosking 1990), equivalent to probability-weightedmoment
(PWM) estimators

Hosking et al. 1985 found that for small samples, MLEs can be unstable, and while LM es-
timators produced biased estimates, they were preferable to maximum likelihood estimators
because they resulted in smaller variances. Madsen et al. 1997 showed that with small samples
the conventional MOM estimators were more accurate than either MLE or LM estimators.
They showed that MLEs are preferable only when κ > 0.3 and the sample size n exceeds 50.

Morrison and Smith 2002 developed procedures that combinedMLE and LMmethods. These
mixed methods gave reduced variance compared to theMLE estimator, and reduced bias com-
pared to the LM estimator. They paid particular attention to the shape parameter, which
influences the upper tail of the frequency distribution.

Ailliot et al. 2011 developed mixed MLE and LM methods that constrained the shape param-
eter κ between -0.5 and 0.5. Note that in hydrology it is often assumed that κ lies in a more
restrictive range such as between -0.3 and 0.3 (for example see Hosking et al. 1985). TheAilliot
et al. 2011 CM1 method involves maximising the log-likelihood function lnL(θ) as a function
of κ after taking µ and σ from L-moment estimators. It is equivalent to the Morrison and
Smith 2002 MIX2 method plus the constraint −0.5 < κ < 0.5.

The log-likelihood of a random sample x1, ..., xn drawn from a GEV distribution with κ ̸= 0

is given by

lnL(θ) = −n lnσ −
n∑

i=0

(
1− κ(xi − µ)

σ

)1/κ

+

(
1

κ
− 1

) n∑
i=0

ln
(
1− κ(xi − µ)

σ

)
(5)

where the term κ(xi − µ) must be less than or equal to σ for any sample xi, and:

8



σ =


λ2κ

(1− 2−κ)Γ(1 + κ)
> 0 κ ̸= 0

λ2/ log(2) > 0 κ = 0
(6)

µ =

λ1 − σ
κ(1− Γ(1 + κ)) κ ̸= 0

λ1 − γσ κ = 0
(7)

where γ is the Euler-Mascheroni constant.

The terms λ1 and λ2 are the first and second “unbiased” sample L-moments calculated using
Hosking’s samlmu method (as described in Hosking 1990 and implemented in version 2.8
of the r package lmom by Hosking, March 2019). As per Hosking 1990, λ1 and λ2 may be
regarded as measures of location and scale respectively.

This work employs the Ailliot et al. 2011 CM1 method but with L-moments and κ first re-
gionalised (see following section).

It is worth noting that L-moment based estimators do not require any information on the
AEP of each annual maxima (known as the “plotting position”). However we must assign
AEP values if we wish to plot maxima against the fitted GEV curve to inspect results. For this
purpose the distribution-free Weibull 1939 method was used4. Expressed in terms of AEP the
Weibull method states that for N ranked samples, AEP = 1 − m/(N + 1), where m is the
rank, withm = 1 for the smallest value andm = N for the largest value.

5 Regionalisation

With 20 years of historical data (1 Jan 2001 to 31 Dec 2020), the annual maxima method
provides 20 values. As alluded to above, fitting the GEV distribution to small sample sizes
such as this is challenging. The various fitting methods discussed above assume that samples
are representative of long-term climate, but this will not always be the case. Samples may
represent unusually dry or unusually wet years, or they may include extremely rare events (a
5000 year ARI event, for instance). A straightforward fit of the GEV to annual maxima may
result in depth predictions for one cell that are significantly different from an immediately
adjacent cell with essentially the same climate.

Regionalisation is a standard practice for improving the estimation of extreme event distribu-
tions by pooling samples from sites with short records. The index-frequency method, first
proposed by Dalrymple 1960, involves dividing annual maxima from each site by a scaling
factor (the index variable) and fitting a distribution to the combined normalised samples.

This method assumes that:

• once annual maxima have been appropriately normalised, the underlying distribution at
each site is identical, and

• records are mutually independent (not including multiple samples of the same event, for
instance).

4See Makkonen et al. 2013 for justification of the use of the Weibull method
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The second may be valid if the time periods of records at each site do not overlap, or if sites
are sufficiently distant from each other that they are not affected by the same weather events.
However the first, while difficult to prove, becomes increasingly unlikely as the distance be-
tween each site increases.

Nevertheless, it has been demonstrated by Hosking and Wallis 1988 that while the presence
of inter-site dependencies decreases accuracy of flood quantile estimates, it does not lead to
bias. They state “Even when both heterogeneity [inequality of the flood frequency distribu-
tions in the region] and intersite dependence are present and the form of the flood frequency
distribution is misspecified, regional flood frequency analysis is more accurate than at-site
analysis.”

In this study, the index variable was taken as themedian annual precipitation for each cell. The
median was used in preference to the mean because it is not usually affected by the presence
of outliers (Reed et al. 1999, Carey-Smith et al. 2018).

We can demonstrate empirically that when fitting the GEV distribution to a set of samples
normalised by the index value i:

• The κ value derived is the same value as is derived from the un-normalised samples:

κ(maxima/i) = κ(maxima)

• Other parameters are related as a function of 1/i:

λ1(maxima/i) = λ1(maxima)/i

λ2(maxima/i) = λ2(maxima)/i

µ(maxima/i) = µ(maxima)/i

σ(maxima/i) = σ(maxima)/i

Two regionalisation processes were carried out for this study. The first was to regionalise
the Hosking L-moments λ1 and λ2 by pooling normalised annual maxima from a selection
of neighbouring cells. The second was to independently regionalise the κ (shape) parameter
using the Ailliot et al. 2011 CM1 method by maximising the log-likelihood function (equation
5 with the constraint −0.5 < κ < 0.5) on pooled normalised annual maxima.

Figure 3 plots regionalised λ1 (location) for 1 hour, 1 day and 4 weeks. In general terms a
higher λ1 value corresponds to higher extreme precipitation. Of interest:

• The highest values are generally seen over the ocean within the tropics (23° S to 23° N),
while the lowest values are seen over North Africa and to the west of both South America
and Southern Africa.

• The Philippines Sea and South China Sea are particularly dominant in the 1 day image,
while at 4 weeks duration the western coastlines of Myanmar and India are particularly
dominant.

Figure 4 plots regionalised κ (shape) for 1 hour, 1 day and 4 weeks. Observations include:
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Figure 3: λ1 (first L-moment; location)
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Figure 4: κ (shape parameter)
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• Across all images, negative κ values are more common than positive values (in fact the
highest value in these images is 0.36; seen at 60° S in the 4 week image).

• At 1 1 hour, positive values are seen in coastal areas surrounding Southeast Asia and to
the south of India.

• At 4weeks, positive κ values are seen acrossmany continental regions, including inNorth
America, South America and Southern Africa.

σ and µ were subsequently calculated by substituting the regionalised κ, λ1 and λ2 values into
equations 6 and 7.

Figure 5 plots the resulting 1% AEP depth at 1 hour, 1 day and 4 weeks.

6 Validation

Because XRain is based on remotely-sensed precipitation data, it is by nature less accurate
than data derived from rain gauges. This means that if extreme statistics based on rain gauge
data are available for a site, this is likely to be the best choice. However there are many parts
of the world where appropriate long-term rain gauges are at a considerable distance away, and
where extrapolation from these is difficult.

It is helpful to compare XRain predictions to those from well-serviced areas, in order to un-
derstand the nature and magnitude of differences. This can then guide the user in calibrating
against local data in other parts of the world.

6.1 Country‑scale

For this exercise we use the NOAA Atlas 14 Precipitation Frequency dataset of extreme pre-
cipitation across southeastern United States (Bonnin et al. 2006, Perica et al. 2013).

Figure 6 plots the percentage difference between XRain depths and NOAA Atlas 14 depths5

at the 1% AEP. At the 1 hour duration, XRain under-predicts depth by approximately 40% in
most of the region. At 1 day and 1 week the differences are generally within 20%, but exceed
50% in some coastal fringes of Florida and Louisiana.

6.2 Site specific

For this exercise four cities were selected where extreme precipitation data is readily available
(Table 1)6.

Figure 7 plots depth vs. AEP at the 24 hour duration. On the whole patterns are replicated
reasonably well, with the ratio between XRain depths and depth from the local dataset not
varying dramatically.

Figure 8 plots depth vs. duration at 1% AEP. Again patterns are replicated reasonably well,
with the ratio between XRain depths and depth from the local dataset not varying dramati-
cally.
5(XRain depth minus NOAA depth) divided by NOAA depth
6For Washington DC, data was obtained at the location of the United States Capitol. For other cities, data was
obtained at the location of their respective parliament buildings
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Country Location Data source
United States of America Washington DC NOAA Atlas 14 Precipitation Frequency

Data Server (multiple volumes)
United Kingdom London FEH 2013: Flood Estimation Handbook

Web Service (Stewart et al. 2010)
Australia Canberra DRDS 2016: Design Rainfall Data System

2016 (Green et al. 2015)
New Zealand Wellington HIRDS v4: High Intensity Rainfall Design

System v4 (Carey-Smith et al. 2018)

Table 1: Validation sites and data sources

6.3 Recommended calibration procedure

If partial extreme data for the location of interest is available from a third party source, then
it is recommended that XRain data is scaled to match the available data. For example, if 24
hour depths are provided for the 20 year ARI event, then depths for other durations can be
estimated by factoring XRain estimates by the ratio between the provided 24 hour depth and
the XRain 24 hour depth.

If extreme data is not available at the location of interest but is available at a neighbouring site,
we recommend:

• Obtain XRain estimates at the neighbouring site for the same durations and AEP or
ARI values. Calculate the ratio between supplied estimates and XRain estimates for
each duration and AEP or ARI.

• Obtain XRain estimates at the location of interest and multiply these by the ratios cal-
culated at the neighbouring site.

In both scenarios it may be advisable to add a factor of safety to estimated values.

7 DDF/IDF tables

By thought experiment, we can deduce that DDF/IDF tables have the following properties:

• As AEP decreases (or ARI increases), depth or intensity must increase or stay the same
(rarer events cannot have less rainfall):

dDepth
dAEP

≥ 0 (8)

• As duration increases, total depth must increase or stay the same (we are including a
longer time period so cannot have less precipitation):

dDepth
dDuration

≥ 0 (9)

• As duration increases the average intensity must decrease or stay the same:

dIntensity
dDuration

≤ 0 (10)
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The first of these properties is satisfied by the condition in equation 6 that σ > 0. However,
because the GEV curve is fitted to annual maxima at each duration independently, the con-
ditions described by equations 9 and 10 are sometimes violated; particularly at lower AEP
values (higher ARI). The approach taken by this work was to enforce these conditions as a
post-processing step. In other words, for a given AEP or ARI, as we iterate through durations
from shortest to longest:

• if GEV depth is less the depth calculated at the previous duration, we use the depth at
that previous duration instead, and

• if the equivalent average intensity is greater than the average intensity calculated at the
previous duration, we use that previous intensity instead, and then multiply it by the
current duration to get depth.

8 Conclusion

Historical extreme precipitation statistics have have calculated from aNASA/JAXAdataset of
historical precipitation known as GPM_3IMERGHH_06. This dataset is made from satellite
measurements and calibrated against monthly precipitation totals taken from over 79,000
rain gauge stations across the world.

Predictions from the resulting product, known as XRain and available from xrain.info/data,
have been compared against those in the USA, UK, Australia and New Zealand. Patterns are
replicated reasonably well, with the ratio between XRain depths and depth from the local
dataset not varying dramatically. However it is recommended that predictions are calibrated
against available local data wherever possible.

This work analysed precipitation from 2001 to 2020, providing a baseline of historical condi-
tions. To allow for climate change, users should apply local guidance or IPCC AR6 projec-
tions.
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